- Platform
- Coursera
- Provider
- Technion - Israel Institute of Technology
- Length
- 5 weeks
- Language
- English
- Credentials
- Paid Certificate Available
- Course Link
Overview
Nanotechnology and nanosensors are broad, interdisciplinary areas that encompass (bio)chemistry, physics, biology, materials science, electrical engineering and more. The present course will provide a survey on some of the fundamental principles behind nanotechnology and nanomaterials and their vital role in novel sensing properties and applications. The course will discuss interesting interdisciplinary scientific and engineering knowledge at the nanoscale to understand fundamental physical differences at the nanosensors. By the end of the course, students will understand the fabrication, characterization, and manipulation of nanomaterials, nanosensors, and how they can be exploited for new applications. Also, students will apply their knowledge of nanotechnology and nanosensors to a topic of personal interest in this course.
----------------
COURSE OBJECTIVES
The course main objective is to enhance critical, creative, and innovative thinking. The course encourages multicultural group work, constructing international 'thinking tanks' for the creation of new ideas. Throughout the course, you will be asked to reflect upon your learning, think "out of the box", and suggest creative ideas.
The course is set to encourage the understanding of:
1. The importance of nanoscale materials for sensing applications.
2. Approaches used for characterizing sensors based nanomaterials.
3. Approaches used for tailoring nanomaterials for a specific sensing application.
4. Metallic and semiconductor nanoparticles.
5. Organic and inorganic nanotubes and nanowires.
6. Optical, mechanical and chemical sensors based on nanomaterials.
7. Hybrid nanomaterial-based sensors.
----------------
We recommend that you read the following supplementary reading materials:
-Jiří Janata, Principles of Chemical Sensors, Springer, 2d Edition (1989).
-Roger George Jackson, Novel Sensors and Sensing, CRC Press (2004).
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Taught by
Hossam Haick
Nanotechnology and nanosensors are broad, interdisciplinary areas that encompass (bio)chemistry, physics, biology, materials science, electrical engineering and more. The present course will provide a survey on some of the fundamental principles behind nanotechnology and nanomaterials and their vital role in novel sensing properties and applications. The course will discuss interesting interdisciplinary scientific and engineering knowledge at the nanoscale to understand fundamental physical differences at the nanosensors. By the end of the course, students will understand the fabrication, characterization, and manipulation of nanomaterials, nanosensors, and how they can be exploited for new applications. Also, students will apply their knowledge of nanotechnology and nanosensors to a topic of personal interest in this course.
----------------
COURSE OBJECTIVES
The course main objective is to enhance critical, creative, and innovative thinking. The course encourages multicultural group work, constructing international 'thinking tanks' for the creation of new ideas. Throughout the course, you will be asked to reflect upon your learning, think "out of the box", and suggest creative ideas.
The course is set to encourage the understanding of:
1. The importance of nanoscale materials for sensing applications.
2. Approaches used for characterizing sensors based nanomaterials.
3. Approaches used for tailoring nanomaterials for a specific sensing application.
4. Metallic and semiconductor nanoparticles.
5. Organic and inorganic nanotubes and nanowires.
6. Optical, mechanical and chemical sensors based on nanomaterials.
7. Hybrid nanomaterial-based sensors.
----------------
We recommend that you read the following supplementary reading materials:
-Jiří Janata, Principles of Chemical Sensors, Springer, 2d Edition (1989).
-Roger George Jackson, Novel Sensors and Sensing, CRC Press (2004).
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Syllabus
- Introduction to Nanotechnology, Part 1
- Introduction to Nanotechnology, Part 2
- Introduction to Sensors’ Science and Technology
- Metal Nanoparticles-based Sensors
- Quantum Dots Sensor
Taught by
Hossam Haick