- Platform
- edX
- Provider
- Harvard University
- Effort
- 5-10 hours a week
- Length
- 7 weeks
- Language
- English
- Credentials
- Paid Certificate Available
- Course Link
Overview
Probability and statistics help to bring logic to a world replete with randomness and uncertainty. This course will give you tools needed to understand data, science, philosophy, engineering, economics, and finance. You will learn not only how to solve challenging technical problems, but also how you can apply those solutions in everyday life.
With examples ranging from medical testing to sports prediction, you will gain a strong foundation for the study of statistical inference, stochastic processes, randomized algorithms, and other subjects where probability is needed.
What You Will Learn
Taught by
Joseph Blitzstein
Probability and statistics help to bring logic to a world replete with randomness and uncertainty. This course will give you tools needed to understand data, science, philosophy, engineering, economics, and finance. You will learn not only how to solve challenging technical problems, but also how you can apply those solutions in everyday life.
With examples ranging from medical testing to sports prediction, you will gain a strong foundation for the study of statistical inference, stochastic processes, randomized algorithms, and other subjects where probability is needed.
What You Will Learn
- How to think about uncertainty and randomness
- How to make good predictions
- The story approach to understanding random variables
- Common probability distributions used in statistics and data science
- Methods for finding the expected value of a random quantity
- How to use conditional probability to approach complicated problems
Syllabus
- Unit 0: Introduction, Course Orientation, and FAQ
- Unit 1: Probability, Counting, and Story Proofs
- Unit 2: Conditional Probability and Bayes' Rule
- Unit 3: Discrete Random Variables
- Unit 4: Continuous Random Variables
- Unit 5: Averages, Law of Large Numbers, and Central Limit Theorem
- Unit 6: Joint Distributions and Conditional Expectation
- Unit 7: Markov Chains
Taught by
Joseph Blitzstein