Data Science Research Methods: Python Edition

edX Data Science Research Methods: Python Edition

Platform
edX
Provider
Microsoft
Effort
2-3 hours/week
Length
6 weeks
Language
English
Credentials
Paid Certificate Available
Part of
Course Link
Overview
This course is part of the Microsoft Professional Program Certificate in Data Science and Microsoft Professional Program in Artificial Intelligence.

Data scientists are often trained in the analysis of data. However, the goal of data science is to produce a good understanding of some problem or idea and build useful models on this understanding. Because of the principle of “garbage in, garbage out,” it is vital that a data scientist know how to evaluate the quality of information that comes into a data analysis. This is especially the case when data are collected specifically for some analysis (e.g., a survey).

In this course, you will learn the fundamentals of the research process—from developing a good question to designing good data collection strategies to putting results in context. Although a data scientist may often play a key part in data analysis, the entire research process must work cohesively for valid insights to be gleaned.

Developed as a powerful and flexible language used in everything from Data Science to cutting-edge and scalable Artificial Intelligence solutions, Python has become an essential tool for doing Data Science and Machine Learning. With this edition of Data Science Research Methods, all of the labs are done with Python, while the videos are language-agnostic. If you prefer your Data Science to be done with R, please see Data Science Research Methods: R Edition.

edX offers financial assistance for learners who want to earn Verified Certificates but who may not be able to pay the fee. To apply for financial assistance, enroll in the course, then follow this link to complete an application for assistance.

What You Will Learn
After completing this course, you will be familiar with the following concepts and techniques:
  • Data analysis and inference
  • Data science research design
  • Experimental data analysis and modeling
Syllabus
  • The Research Process
  • Planning for Analysis
  • Research Claims
  • Measurement
  • Correlational and Experimental Design
Note: This syllabus is preliminary and subject to change.
Taught by
Ben Olsen and Tom Carpenter
Author
edX
Views
895
First release
Last update
Rating
0.00 star(s) 0 ratings
Top