- Platform
- edX
- Provider
- Columbia University
- Effort
- 8-10 hours/week
- Length
- 12 weeks
- Language
- English
- Credentials
- Paid Certificate Available
- Part of
- Course Link
Overview
In today’s world, managerial decisions are increasingly based on data-driven models and analysis using statistical and optimization methods that have dramatically changed the way businesses operate in most domains including service operations, marketing, transportation, and finance.
The main objectives of this course are the following:
Most of the topics will be presented in the context of practical business applications to illustrate its usefulness in practice.
What you'll learn
Taught by
Vineet Goyal
In today’s world, managerial decisions are increasingly based on data-driven models and analysis using statistical and optimization methods that have dramatically changed the way businesses operate in most domains including service operations, marketing, transportation, and finance.
The main objectives of this course are the following:
- Introduce fundamental techniques towards a principled approach for data-driven decision-making.
- Quantitative modeling of dynamic nature of decision problems using historical data, and
- Learn various approaches for decision-making in the face of uncertainty
Most of the topics will be presented in the context of practical business applications to illustrate its usefulness in practice.
What you'll learn
- Fundamental concepts from probability, statistics, stochastic modeling, and optimization to develop systematic frameworks for decision-making in a dynamic setting
- How to use historical data to learn the underlying model and pattern
- Optimization methods and software to solve decision problems under uncertainty in business applications
Syllabus
- Introduction to Probability: Random variables; Normal, Binomial, Exponential distributions; applications
- Estimation: sampling; confidence intervals; hypothesis testing
- Regression: linear regression; dummy variables; applications
- Linear Optimization; Non-linear optimization; Discrete Optimization; applications
- Dynamic Optimization; decision trees
Vineet Goyal